
FINAL REPORT

Robust Nonlinear Feedback Control of

Aircraft Propulsion Systems

NASA Glen Research Center Grant: NAG-3-1975

SUBMITTED TO:

NASA Glen Research Center

Attention: Grants Office

21000 Brookpark Road, Mail Stop 500-319

Cleveland, OH 44135-3191

NASA TECHNICAL OFFICER:

Jonathan Litt

NASA Glen Research Center

21000 Brookpark Road, MaiI Stop 77-1

Cleveland, OH 44135-3191

216.433.3748

15 JANUARY, 2001

Principal Investigators:

Contract Dates:

Total Budget:

Drs. William L. Garrard and Gary J. Balas

Department of Aerospace Engineering and Mechanics

University of Minnesota

Minneapolis, MN 55455

612.625.8000

wgarrard, balas_aem, umn. edu

1 November 1996 - 30 January 2001

$ 204,848



Abstract

This is the final report on the research performed under NASA Glen grant NASA/NAG-

3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool,

mixed flow, after burning turbofan engine. The research focussed on the design of linear

and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using

Hoo and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine

simulation was provided by Pratt & Whitney within the NASA ROCETS simulation soft-

ware environment. ROCETS was used to generate linearized models of the turbofan engine

for control design and analysis as well as the simulation environment to evaluate the perfor-

mance and robustness of the controllers. Comparison between the 7-/o_ and LPV controllers

are made with the baseline multivariable controller and developed by Pratt & Whitney en-

gineers included in the ROCETS simulation. Simulation results indicate that N_ and LPV

techniques effectively achieve desired response characteristics with minimal cross coupling

between commanded values and are very robust to unmodeled dynamics and sensor noise.



Chapter 1

Introduction

The design of traditional gain-scheduled, inner-loop controllers for a turbofan engine takes

significant time and can not guarantee performance and stability of the closed-loop system

across the operating envelope [10]. Linear parameter-varying (LPV) control methodologies

can however, guarantee stability and performance over the entire operating envelope, making

them a natural approach for inner-loop control of turbofan engines. This report documents

the application of LPV control design techniques to a PW turbofan engine. Pratt & Whitney

and NASA Glenn at Lewis Field Research Center provided the University of Minnesota with

a transient turbofan engine simulation (ROCETS) to use as a test bed for implementing LPV

control designs. The baseline multivariable control algorithm in ROCETS was implemented

as many interconnected subroutines rather than as a single integrated subroutine. This was

not conducive to implementation and simulation of candidate controllers, and necessitated

changes to the controller software implementation in ROCETS. This report discusses the

revisions required to implement state-space and LPV controllers, the design of 7-/oo and LPV

controllers, and the results obtained from the implementation of the controllers in the Pratt

& Whitney engine simulation.

1.1 Accomplishments

This grant partially supported the turbofan engine control research of Professors Gary Balas

and William Garrard, a post-doctoral researcher, Dr. Greg Wolodkin, two graduate students,

Jack Ryan and Dr. Jeff Barker, and two undergraduate researchers, Chris Mitchell and

Edward Harper. Dr. Wolodkin currently works at the Mathworks and was one of their lead

engineers in the advanced controls area. He has since moved within the Mathworks and



is currently responsiblefor the core Matlab product. Dr. Barker graduated with the Ph.D.
degreein 1999and is employedby BoeingPhantomWorks in St. Louis. JackRyan wrote his
Master's project report on the turbofan engineresearchand is currently employedby NASA
Dryden Flight ResearchCenter as a flight simulation engineer. (Note that Chapters 2, 3
and 5 of this report are based,in part, on his Master's report.) Chris Mitchell is currently
a Ph.D. student in the AerospaceEngineeringand Mechanicsdepartment at the University
of Minnesota in fluid mechanicsand Edward Harper is currently working as an engineerin
industry.

The following area list of the technicalaccomplishmentsachievedwith the support of this
grant.

Learnedto usethe NASA RocketEngineTransient Simulation (ROCETS) systemto
simulate the turbofan enginemodel provided by Pratt and Whitney (PW).

Developmentof a linear, parameter-varying(LPV) model of the PW turbofan engine
for control design.

Developedand integratedFortran subroutinesto implementlinear andLPV state-space
controllersinto the ROCETS nonlinearsimulation.

Successfullybackengineeredthe baselinePW multivariable controller.

Synthesizedrobust, linear multivariable 7-/o_controllersand gain-scheduledLPV con-
troller for the turbofan engine.

Successfullyimplementedthesecontrollersin the ROCETS nonlinearsimulation.

Achievedperformancerobustnessof the non-rate and rate boundedLPV controllers.
The LPV controllerswere scheduledon a laggedmeasurementof power code. These
controllersperformedwell for a variety of environmentalconditions, through the flight
envelopewith and without noisy sensormeasurements.

Three papersand a Mastersproject report werewritten on the synthesisof controllers for
turbofan engineduring the length of this contract. A fourth paper is in preparation based
on the latest resultsof the gain-scheduledLPV inner-loop controllers for the PW turbofan
enginemodel. The technicalmonitor for this grantwasJonathanLitt, NASA Glenn Research
Center.

• G. Wolodkin, G.J. Balas,W.L. Garrard, "Application of parameter-dependentrobust
control synthesisto turbofan engines,' AIAA Journal of Guidance, Dynamics and

Control, vol. 22, no. 6, 1999, pp. 833-838.
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Chapter 2

Engine Simulation

The Pratt & Whitney STF 952 (Figure 2.1), a twin spool, mixed flow, after burning turbofan

engine, is used as the example application in this study. It features a highly loaded, three

stage fan, a four stage high pressure compressor, an axially staged triangular alignment

combuster, and an advanced high pressure turbine and low pressure turbine. For later

reference, the fan inlet is identified as station 2, the high pressure turbine inlet as station 4,

and the turbine exit guide vane as station 6. The pressures at each station are designated as

P2, P4, and P6 respectively. A diagram of the engine and the actuator and sensor locations

is given in Figure 2.1.

The STF 952 engine is modeled using the NASA Rocket Engine Transient Simulation

(ROCETS) software. The ROCETS model of the STF 952 engine is fully nonlinear and it

uses a multivariable integration routine based on a modified Newton-Raphson technique to

calculate transient responses and steady-state balance. The linearized models of the STF

952 engine are all generated using ROCETS as are all nonlinear closed-loop simulations.

Through out this report, we will denote the PW STF 952 turbofan engine as the "engine"

or "turbofan engine" in the text.

The engine dynamics vary with thrust request or "power code," temperature and external

air pressure. Air pressure and temperature vary with altitude as well as weather. The

engine power code varies from 3,000 to 30,000 which corresponds to near idle to military

power. Initially, the altitude is set at sea level, OK ft, a speed of zero Mach and standard

atmosphere. The objective of the control system is to accurately track inner-loop commands

to the engine.

A turbofan engine transient performance computer model of the SCIP Engine (STF 952A)

was configured using the NASA Rocket Engine Transient Simulation (ROCETS) system.



ROCETS interfaces modular components to generate a full engine simulation in which a run

processor reads and interprets input to run particular experiments. A multi-variable modified

Newton-Raphson technique is used for transient integrations and steady-state balances [1]

Schedules of desired thrust level, altitude, Mach number, or other variables can be input

to the simulation. The simulation model of engine dynamics generate the necessary overall

pressure ratio (OPR = P4/P2), engine pressure ratio (EPR = P6/P2) and high pres-

sure compressor spool speed (N2) requests to meet the scheduled variables. These requests

(OPRREQ, EPRREQ, N2REQ) are fed to the inner-loop control system which generates the

required primary burner fuel flow (WFPRIB), high pressure compressor normalized variable

vane angle (VANEHPC), and convergent throat area (AREANOZL) commands to achieve

the requests. This control inner-loop is the focus of this report.

The current multivariable controller in the turbofan simulation, used as a baseline to com-

pare with designed controllers, operates in two modes: start mode and nominal multivariable

mode. The start mode is used to transition from light off fuel flow, to nominal multivariable

control mode. The nominal multivariable mode uses a controller scheduled on total corrected

airflow [1]. This paper focuses on the design of a controller for the nominal multivariable

mode. The baseline controller is used during the initialization part of the simulation.

The baseline control interconnection (Figure 2.2) has an two loops.
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Figure 2.1: STF 952 Turbofan Engine

The inner control loop consists of the state space matrix K and the gain matrix S. The K
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Figure 2.2: Interconnection of Engine Model and Baseline PW Controller

matrix has the form

K

where

0 1 0 0

A2,1 1 -- A2,1 A2,3 -A2,3

0 0 0 1

A4,t -A4,1 A4,3 1 - A4,3

As,t -As,, A5,3 -A5,3

0 1 0 0

0 0 0 1

As,, -A5,1 A5,3 -A5,3

0 0

0 0

0 0

0 0

1 0

0 St,,

0 $2, l

1 $3,1

0 0 B1,1 B1,2 B1,3

0 0 B2,1 B2,2 B2,3

0 0 B3,1 B3,2 B3,3

0 0 B4,1 B4,2 B4,3

0 0 B5,1 B5,2 B5,3

$1,2 S1,3 0 0 0

S2,2 $2, 3 0 O 0

$3,2 $3, 3 0 0 0

(2.1)

St,, = Bt,, + D1,1

$2,1 = B3,1 + D2,1

S3,t = B5,1 + D3,1

S1,2 = B1,2 + D1,2

$2,2 = B3,2 + D2,2

Sa,2 = Bs,2 + D3,2

$1,3 = Bt,3 + D1,3

$2,3 = B3,3 + D2,3

$3,3 = B5,3 + D3,3

(2.2)

The values of A+j, Bi,j, Di,j are determined via a look-up table scheduled on operating

condition. The states of the controller are: gas generator fuel flow (xl), precursor to the

normalized gas generator fuel flow (x2), normalized flow parameter(x3), precursor to the

normalized flow parameter(x4), and normalized compressor variable vane(xs).

The inputs to K are

U-_-[ _/'1 ?22 _3 IT (2.3)

and

e=[el e_ e3 ] T (2.4)

8



u consistsof normalizedoverall pressureratio error (ul), normalizedengine pressureratio
error (u2), and normalized rotor speederror (u3). The vector e consists of overall pressure

ratio error from the last pass through the loop (el), engine pressure ratio error from the last

pass through the loop (e2), and high rotor speed error from the last pass through the loop

(e3).

The outputs from the controller are

z=[xl z4 (2.5)
and

v = [ y, y2 y3 (2.6)

Yl is normalized fuel flow request, Y2 is normalized flow parameter request, and Y3 is nor-

malized compressor variable vane request.

The S matrix has the form

1 $2,2S3,3 -- $3,2S2,3 $3,2S1,3 - S1,2S3,3 S1,2S2,3 - $2,2S1,3

DETGN $3,1S2, 3 - $2,1S3, 3 S1,1S3, 3 - S3,1S1, 3 $2,1S1, 3 - S1,1S2,3 (2.7)

&,lSa,2 - $3,,&,2 $3,,$1,2 - &,,$2,1 $1,,$2,2 - $2,,$1,2

where

DETGN = SI,ISe,2Ss,3 + 31,232,3S3,1 + $2,3S2,1S3,2 - S3,1S2,eSI,s - Ss,2S22S_,1 - $3,3S2,_S_,e

(2.8)

It has inputs Yl - xl, Y2 - x4,and Y3 - xs, and outputs el, e2, and e3. Together, K and S

form the baseline controller for inner-loop control of the PW turbofan engine.

The closed-loop system consists of the plant model (P), two constant gain matrices (OSC

and ISC), and the controller. The outer-loop control generates the desired values of overall

pressure ratio (OPRREQ), engine pressure ratio (EPRREQ), and high speed rotor request

(N2REQ) based on environmental conditions, power code and the baseline closed-loop engine

dynamic response.

The inputs to the plant, P in Figure 2.2, are WFPRIB, VANEHPC, and AREANOZL. The

plant outputs are P2, P4, P6, and N2. The matrix OSC normalizes its inputs from overall

pressure ratio error (OPRREQ-OPR), engine pressure ratio error (EPRREQ-EPR) and high

rotor speed error(N2REQ-N2) to the normalized parameters ul,u2, and u3. The matrix ISC

dimensionalizes its inputs from yl, y2, and Y3 to WFPRIB, AREANOZL, and VANEHPC.

The ISC gain matrix is

7 0 0

0 807 0 (2.9)

0 0 1
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and the OSC gain matrix is

o.0320491 0 0
14.55

0 0.1599723 0
14.55

0 0 0.000055528

(2.10)

2.1 Controller Subroutines

To implement state-space multivariable controllers, changes were required to the ROCETS

nonlinear simulation of the turbofan engine model. These modifications allow 3 input, 3

output multivarible controllers of state order up to 21 to be read in and replace the baseline

Pratt & Whitney controller. This allowed controllers to be easily tested in the simulation

without rewriting or recompiling the ROCETS simulation. Changes were also made so that

the simulation uses the Pratt _z Whitney controller in the start up mode until it has reached

the multivariable control mode. This eliminates engine start-up issues in the design of 7/o_

and LPV controllers.

The new code reads in the synthesized controller at the beginning of each simulation. If the

controller has less than 21 states, it is padded with zeros so that the multiplication routine

only need work with a constant size control matrix. Figure 2.3 shows the implementation of

a five state controller in the control algorithm. The usual ABCD five state control matrix

is located in the bottom right corner. Zeros fill the remaining entries keeping Xl through x16

constant zeros. Details of the algorithm are presented in Appendix B.

The ROCETS state-space controller implementation was tested with the Pratt & Whitney

baseline controller and the results were compared with the original simulation of the PW

baseline controller implementation. This was necessary to demonstrate our understanding of

the existing code and our ability to replace the control algorithms with out jeopardizing the

overall engine simulation. The baseline simulation matched well with the new implementa-

tion verifying the state-space algorithms. Figure 2.4 compares the Pratt & Whitney control

inputs and outputs with our implementation of the Pratt & Whitney controller. Pratt &

Whitney's N2 follows its request ramping up after the step input while our implementation's

N2 follows its request which does not ramp up. The difference is due to the reference com-

mand request generating algorithm which is not part of this research project. EPR, OPR

and N2 commands are treated as exogenous inputs in the control problem since we do not

have direct control of them. The differences in VANEHPC are directly due to the variations

in the N2 commands. The small variations in the other channels are not significant.
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2.2 Engine Linearized Models

Ten Jacobian linearized plant models were generated using the nonlinear simulation between

3000 and 30000 lbf thrust at 3000 lbf thrust intervals and different altitudes. Each model was

generated for a given altitude, zero Mach, zero angle of attack, standard atmosphere, zero

side slip, and 14.696 psi static pressure. The Jacobian linearizations have 11 states, three

inputs, and three outputs. The states are identified in Table 2.1, the inputs in Table 2.2,and

the outputs in Table 2.3. The simulation's input file used to generate the linear plants along

with Matlab utilities to move the generated plants into Matlab files are provided in Appendix

A.3 and A.A.4.4 respectively.

State Description

SN1 Low Rotor Physical Speed (rpm)

TMCHPC High pressure compressor case lumped metal temperature (deg R)

TMBHPC High pressure compressor blade lumped metal temperature (deg R)

TMRHPC High pressure compressor rotor lumped metal temperature (deg R)

TMCHPT High pressure turbine case lumped metal temperature (deg R)

TMBHPT High pressure turbine blade lumped metal temperature (deg R)

TMRHPT High pressure turbine rotor lumped metal temperature (deg R)

TMCLPT Low pressure turbine case lumped metal temperature (degR)

TMBLPT Low pressure turbine blade lumped metal temperature (degR)

TMRLPT Low pressure turbine rotor lumped metal temperature (deg R)

TMILBN Main burner liner metal temperature (deg R)

Table 2.1: Linear Plant States

Input Description

WFPRIB Primary Fuel Flow rate (lbm/sec)

VANEHPC High pressure compressor normalized variable vane position

AREANOZL Spherical Convergent flap nozzle physical area (in 2)

Table 2.2: Linear Plant Inputs

Figure 2.5 shows the magnitude and phase of the linearized plants. The dotted line repre-

sents the 3000 lbf model, the solid 15000 lbf model, and the dash-dot line 30000 lbf model.

All other power codes are represented by the dash lines.

The linearized engine models are used for the 7-/o_ and LPV control designs. The plots in

Figure 2.5 indicate that the state order of these models may be reduced. Balanced realization

13



Output Description

P2 Engine facetotal pressure(psi)
P4 Primary burner exit total pressure(psi)
P6 Turbine exit guide vane exit total pressure (psi)

N2 High rotor physical speed (rpm)

Table 2.3: Linear Plant Outputs

model reduction will be used to reduce the plant state order. Since the LPV design model

requires all states to have the same meaning, the same balancing transformation matrix

must be used for all plant models. The transformation matrix at the 12,000 power code was

selected to balance the models. After balancing, all engine models were truncated to three

states with no effect on the plant dynamics.

14
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Figure 2.5: Magnitude (top) and Phase (bottom) of Jacobian Linearizations at Sea Level

and Standard Day Atmosphere.
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Chapter 3

Controllers

7-/_ control design techniques are used to synthesize controllers for the PW turbofan at ten

power code operating points. Jacobian linearizations of the turbofan engine were generated

at power codes from 3000 to 30000 lbf thrust in 3000 lbf increments. The reader is referred

to references [18, 13, 16] for details on _ control theory and its application. The con-

trol objectives were to achieve good tracking of OPR, EPR, and N2 commands, decoupled

command response, disturbance rejection below 2 rad/sec and a 10 rad/sec bandwidth and

robustness to modeling error, sensor noise and changing environmental conditions. The 7-/_

controllers also must respect the physical limits on the actuator deflections and rates. The

controllers are designed using a model matching problem formulation in the 7-/_ framework

(see Figure 3.1). We desired the engine to respond as three single-input/single-output (SISO)

systems with no off-diagonal coupling. Pmod represents the decoupled system. Differences

between this desired model and the true plant are penalized via the weight Wp.

The disturbance vector dl represents customer demands, whose values we wish the plant

output to track. Specifically these commands correspond to desired normalized overall en-

gine pressure ratio, normalized engine pressure ratio and normalized high rotor speed. The

disturbance vector d2 is used to represent both noise and input uncertainty in the problem

fornmlation to which the controller should be robust. The input uncertainty is mapped to

tile output of the plant model to reduce the number of states required to define the open-loop

control design interconnection.

By keeping the error vector el small, good tracking of dl is ensured. The role of e2 is

to penalize control effort, in terms of actuator magnitudes as well as actuator rates. The

controller sees Yc as its input measurements, and generates uc as its output.
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The actuators aremodeledas P_ct, a diagonal augmentation of unity gain first-order lags,

100
P,_a - --I3×3 (3.1)

s + 100

The actuator model outputs actuator positions u and actuator rates _2, to allow actuator

rates to be penalized in the control design.

The model-matching block Pmod was based on previous work in Reference [2]. It is desired

that the engine response to OPR and .EPR request follow a second order model with natural

frequency of 10 rad/sec and damping of 0.65. The engine response to N2 request should

follow a second order model with natural frequency of 2.5 rad/sec and damping of 0.65.

Pmod, S 2 + 2_Wi q- W2i

Pmodl 0 0

0 Pmodl 0

0 0 Pmo,h

Here aq = 10 rad/s, co2 = 2.5 rad/s, and _ = 0.65.

The input weight Wi is a constant weighting used to normalize the inputs.

weight

The input

0.08 0 0

0 0.06 0

0 0 0.25

in these designs.

The disturbance Wd is used to model actuator errors as well as limit the bandwidth of

control effort by ramping up at high frequency.

Wd = 0.0005 °1-7s + 1 /ax3,
1

a--ff_s + 1

The control weights Wc are selected to be constant. Here we have chosen to penalize the

normalized actuator movement larger than unity, as well as actuator rates,

VV rC

0.05 0 0 0 0 0

0 0.02 0 0 0 0

0 0 0.05 0 0 0

0 0 0 0.05 0 0

0 0 0 0 0.005 0

0 0 0 0 0 0.05
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The performance weight Wp penalizes the difference between the desired and the actual

closed-loop response of the turbofan engine. The larger the magnitude of Wp, the smaller

the allowable difference between desired and actual output. In the initial designs, _ is a

first order low-pass weight given by

W_

....!---_,+ 1
500_ 0 0

_-_s+l

300" £_ s+a
o _ 0

.... l_s+l

0 0 4oo_

This ensures good tracking of the response models in the bandwidth 1-10 rad/s, with little

or no DC error. At low frequency (below 0.1 rad/s) the Wp weight on the OPR corresponds
1 1

to a DC errors of _ or 0.2% tracking error. The EPR tracking error at DC is a--N or 0.33%
1

and the N2 tracking error at DC can be ag6 or 0.25%. At high frequency, the mismatch

between actual and desired output is not penalized.

The matrix OSC normalizes its inputs from overall pressure ratio error (OPRREQ-OPR),

engine pressure ratio error (EPRREQ-EPR) and high rotor speed error(N2REQ-N2).

d_

P,noa _ dl

Figure 3.1: 7-/o_ control design interconnection

The open-loop interconnection shown in Figure 3.1 has 18 states. Hence the resulting con-

trollers had 18 states. Eight of the ten 7-t_ point designs at the power codes between 3K and

30K achieved an 7-/_ norm less than 1.62 and all ten were under 2.4. They were first tested in

linear simulations and then in the nonlinear ROCETS simulation for small step commands.

While the linear simulations were satisfactory, the nonlinear simulation resulted in highly

oscillatory reference commands. Recall that the reference commands are generated by an

outer-loop controller which has not been modified from the original PW baseline design.
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Figure 3.2 and 3.3, showthe ROCETS simulation time responsewith a linear7-t_ controller
implementand a step commandfrom 15000lbf to 15100lbf. The simulation-generatedcom-
mandsof OPR,EPR, and N2 areall oscillatoryresulting in oscillatory responses.Controllers
designedfor the other nine powercodeshad similar results.
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3.1 Identification of Linear Engine Models

Tile good performance of the _o_ controllers on the linear engine models and the poor

performance of these controllers in the nonlinear simulation required investigation. The first

hypothesis was an error in the implementation of the linear state-space controller subroutine

in ROCETS. After testing, it was found that this was not the case. Therefore, the problem

must have been related to the inaccuracy of the linearized engine model relative to the

nonlinear engine simulation. This could be due to several reasons. The first is our poor

understanding of the ROCETS simulation code. Hence we may have incorrectly linearized

the engine. Similarly, the ROCETS linearization may only include engine dynamics and

therefore all the actuator and sensor dynamics, as well as filtering and computational delays

need to be included in the linear engine model as well. The linear models used in the

controller synthesis did not capture all the nonlinear plant dynamics. These unmodelled

dynamics, we conjectured, were causing the oscillations. The linear and nonlinear responses

of the plant to single channel inputs were therefore examined.

The nonlinear ROCETS simulation needed to be modified since it was not designed for

such an examination. By setting two of the three controller outputs to zero, the remaining

plant input could be set to a variable frequency sinusoidal. Figure 3.4 shows the responses

to the single sinusoidal inputs. The nonlinear simulation response is represented by the solid

lines, and the linear models response by the dashed lines. In each set of plots, the top left

plot displays the active input signal: WFPRIB in the first, AREANOZL in the second, and

VANEHPC in the third. The remaining plots display the signal responses of OPR, EPR, and

N2. We can see that the linear and nonlinear models do not match exactly. In particular, the

nonlinear responses of N2 are smoother than their linear counterparts. They respond slower

and subsequently lack the sharp overshoot. After examining all the controller inputs and

outputs, to better match the nonlinear engine simulation: the actuator model was modified,

a sensor model added to the rotor speed sensor, N2, and a lag filter was included in the

high speed pressure compressor vane actuator, to help slow down the response of N2 and

compensate for the differences between the linear time response and nonlinear simulation.

The small signal simulations of the modified linear engine models matched the nonlinear

engine simulations well across power code at sea level and standard atmosphere. The new

actuator model was chosen as
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Pact

20 0 0
s+20

0 20 0
s+20

0 0 15
s+15

2o_ 0 0
s+20

0 2o_ 0
s+20

0 0 15_
s+15

A sensor model was added to the N2 measurement,

_s+l
sen -- 1

_s+l

and a lag filter was added to the N2 command channel,

lag - _s + 1
_s+l

The modified linear engine models frequency responses are shown in Figure 3.5. The N2

phase change is apparent as is the VANEHPC input smooth roll off at high frequency. (See

Figure 2.5 for comparison.). The modified linear models of the engine are used to synthesize

all the subsequent 7/oo and LPV control designs.
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3.2 Redesigned Controllers

The 7-/_ controllers were re-synthesized using the same weights as used in the original 7-/_

designs but with the new lag, sensor model and actuator model. The redesigned controllers

had 20 states and achieved a 7-/_ norm of 1.54. Time responses in the nonlinear ROCETS

simulation of the new 15000 lbf thrust system to a 100 lbf step are shown in Figure 3.7. The

oscillations in the reference commands have been eliminated. The 7-/_ controllers achieved

better tracking than the baseline controller in OPR and EPR, with comparable overshoot.

Note that with the 7-/o_ controller implemented in the nonlinear engine simulation, the re-

sponse of N2 exhibits more overshoot but better tracking of the N2 command as compared

with its baseline counterpart.

L Pact _ Uc

dl

Figure 3.6: 7-/_ control design interconnection
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Chapter 4

Linear Parameter-Varying Control

Theory

We begin with a brief introduction to gain scheduling based on linear parameter-varying

representations. For a compact subset P C _s, the parameter variation set ._ denotes the

set of all piecewise continuous functions mapping 7_ (time) into P with a finite number of

discontinuities in any interval. A compact set P C 7_ s, along with continuous functions

A : TO.s --+ 7_n×_, B : 7-q2 -+ 7_"×_, C : 7__ --+ 7__e×_ and D : 7__ -+ _ne×nd represent an nth

order linear parametrically varying (LPV) system, whose dynamics evolve as

Ix(t)e(t) ] = [ A(p(t)) B(p(t))C(p(t)) D(p(t)) ] [ x(t)d(t) ] (4.1)

where p E _),. For here on the time dependence of the parameter p will be suppressed due to

space limitations. The induced 122 norm of a quadratically stable LPV system GT_, [5, 4, 7],

with zero initial conditions, is defined as

Hell,-
IIG._ft- sup sup

peo:_, ]ldli2 _¢ 0 IIdll2

dcL2

This quantity is always finite.

rameter rate-of-variation problem can now be stated.

Consider a generalized )lant with the usual structure

2

el

g2

y

(4.2)

The quadratic LPV 7-performance with bounds on the pa-

A Bu B12 B2

Cn 0 0 0

C12 0 0 I

(72 0 I 0

X

dl

d2 '

?2
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wherethe A, B, and C matrices are a function of p. For simplicity of derivation, assume

Du(p) = 0, D22(p) = 0 and D12(p), D21(P) have been scaled to the standard form. The LPV

rate bounded synthesis solution can be solved as a two step procedure [5, 7],

1. Find NECESSARY AND SUFFICIENT conditions for existence of a dynamic controller of

the form

u Cg(p,_5) Dg(p,_b) y "

so that the closed-loop system passes the analysis test.

2. In the case of one parameter, eliminate from the realization of the controller the t5

dependence.

The analysis test is

Definition 1 There exists a LPV controller such that the closed-loop system passes the

analysis test if and only if there exist matrix functions X(.) and Y(.) such that for all p G P,

X(p),Y(p) > 0 and

yfiT + _y _ p_(p)dY ___pB2B T yC T B1

Cn g --In_l 0

B T 0 -I,_ d

<0

[ ATX + XA +-6(p) ax -- cTc2 XBll C T
-M, o

C1 0 -In_

<0

X(P) In ]In Y(p) > 0

The matrices A, B, C, X and Y all depend on the parameter p. where

J.(p) := A(p)- B2(p)Cle(p),

B,(p) = [Bll(P) B12(p)],

J.(p) :: A(p)- B12(p)C2(p),

CT(R)= [C_(p) C_@)].
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The matrix functions X(.) and Y(.) can be solved for by expressing the above inequalities as

the feasibility of a set of Affine Matrix Inequalities (AMIs), which can be solved numerically.

For more details on LPV synthesis results the reader is referred to references [5, 6, 12].

Note that the parameter p is assumed to be available in real time, and hence it is possible

to construct an LPV controller whose dynamics adjust according to variations in p and

maintain stability and performance along all parameter trajectories.

This approach allows gain-scheduled controllers to be treated as a single entity, with the

gain scheduling achieved via the parameter-dependent controller. This approach has been

successfully applied to the synthesis of missile autopilots [6, 17] and flight controllers [8].
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Chapter 5

LPV Control Design

LPV controllers were designed with the interconnection shown in Figure 5.1 to operate over

the entire operating envelope. The same weights, sensor models and actuator models used

for the second 7-/:¢ design are used for the LPV controller. Here Psys changes with the

scheduling parameter p, which we chose as a lagged measurement of power code. Using

LPV synthesis techniques guarantees both stability and performance in the presence of time

variations of the time-varying parameter p. The technique requires solving a linear matrix

inequality (LMI) over the entire parameter space.

The initial LPV designs in this chapter allow for infinity fast variations of the scheduled

parameter p. These LPV controllers are called "non-rate bounded" designs. These may be

inherently conservative since the controller must achieve the desired performance and robust-

ness objectives for arbitrarily rapid changes in power code. Subsequent LPV design account

for the physical limits on the rate-of-variation of power in the LPV synthesis process. These

LPV controllers are called "rate-bounded" controllers. The rate-bounded LPV controllers

are less conservative than the non-rate-bounded designs and more closely account for the

physics of the physical system.

The control design objective was to synthesize a LPV controller which has the same de-

coupled command response across power code variation. The LPV controller measures the

errors in OPR, EPR and N2 responses and schedules on power code. The resulting set of

10 controllers, one for each operating point, contained 20 states. An induced £2 norm of 2.3

was achieved.
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5.1

yc .q_----_

_d- d2

Figure 5.1: LPV Control Interconnection

LPV Control Algorithm

Integration of the LPV controllers into the ROCETS nonlinear simulation required a new

controller Fortran subroutine. As with the 7-/_ controller algorithm, we wanted to be able to

handle controllers of various state order, without having to recompile the simulation. Lower

order controllers were, as with the 7/0¢ algorithm, padded with zeros to have 21 states. The

synthesized controllers were read in to the simulation from an external file. The controller

entries for each point design were listed in a single column such that the 3000 lbf thrust power

code entry A(1,1) was the first entry and the 30000 lbf thrust power code entry D(3,3) was

the last entry. Figure 5.2 graphically displays the controller shape. The algorithm reads

in the controller from the external file, assuming it contains controllers for ten operating

points. Gains for all controllers not explicitly designed, are linearly interpolated from those

of designed controllers. Figure 5.3 depicts an example of controller linear interpolation. Here

controllers were explicitly designed for 6000 and 9000 lbf power code and 5000 and 6000 ft

altitude. The gain for 8000 lbf, 5500 ft is easily interpolated. 1

The trim values of the normalized actuator commands generated from the Jacobian lin-

earizations are added to the LPV controller commands in the ROCKET engine simulation.

These trim values are scheduled as a function of a lagged power code measurement and

altitude. The addition of the trim value provided the steady state control input whereas the

LPV control signals tracking the dynamic response of the system.

Fig. 5.4 shows 100 lbf step response results using a single LPV controller. Comparison

with the 7-/_ point designs step responses (Fig. 3.7) indicate that the LPV point controllers

1Chris Mitchel wrote much of the LPV interpolation code
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have similar characteristicsto the 7-/o_counterparts. Hencewe have recoveredthe linear

performanceand robustnessof the original 7-/_ point designwith the LPV gain-scheduled
designwhile directly synthesizinga globally stable,gain-scheduledmultivariable controller.
In contrast, however,the performanceof the LPV controller is guaranteednot only at the
designpoints, but at intermediate valuesof powercodeas well. Moreover,implementation
of the gain-scheduledLPV controller requiresonly linear interpolation of the state-space
data.

The LPV controller wassimulated in ROCETS with power codevariations the operating

envelope(from 3000to 27000lbf thrust) at sealevel, standard atmosphereand zeroMach.
Figure 5.5 showsthe commandedpower code variation as a function of time. Figure 5.6
showsthe plant outputs for the LPV controller and the baselinecontroller alongwith the
requestsfor each.Figure 5.7showsthe plant inputs. The zoomedareain eachfigure provides
a closercomparisonof the LPV and baselinecontrollersperformance.The plots indicate the
LPV controllers reach compatible tracking, and response as the baseline controllers. This

affirms the LPV controller synthesis methodology can achieve the same results as the more

time-consuming ad-hoc methods traditionally used.
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LPV Linear Interpolation
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Chapter 6

LPV Controller Redesign

This chapter describes the redesign of the LPV controller. The LPV controller described in

the previous chapter did not perform well at high altitudes. Hence the goal of the controller

redesign is to synthesize a single LPV controller that performs well across the flight envelope

for all environmental conditions. The environmental conditions include a polar day (-18.5°C),

standard day (24°C) and a tropical day (41°C). The objective is also to schedule only on

lagged power code. Noted that above 30K ft, the actuators begin to saturate. The effect of

these saturations will be investigated since they directly effect the achievable performance

of the closed-loop system and potentially the stability of the system.

7-/_ and LPV control theory are used to synthesize feedback controllers. The system

interconnection initially considered for control design is shown in Fig. 6.2. In the figure,

/5(p) represents the three-input, three-output, three-state engine model with the scaling

normalizing matrices (ISC and OSC) and sensor model Psen. Psen is defined as

Psen

1 0 0

0 0 1

0 0 _s+l
1
_s+l

A block diagram picture of/5(p) is shown in Fig. 6.1.

Figure 6.1: Turbofan engine plant model/5(p)
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Yc _----_

I
f
I

l

el_dt

Figure 6.2: Interconnection for LPV controller redesign.

The A, B, C, D matrices vary as a function of power code (PC), with data provided for ten

distinct power codes PC = 3000, 6000,...,30000. The input and output units have been

normalized. As mentioned previously, inputs to the plant are primary burner fuel flow rate

(WFPRIB or PBFF, lbm/sec), high compressor vane percentage area (VANEHPC or CVA)

and convergent throat area feedback (AREANOZL or CVA, inS). Outputs are normalized

overall pressure ratio (OPR), engine pressure ratio (EPR), and high rotor speed (N2). The

PW turbofan models correspond to the identified linear model described in Section 3.1.

The control problem is formulated as a model matching problem in the 7-t_ and LPV

framework. V_ desire the engine to respond as three single-input/single-output (SISO)

systems with no off-diagonal coupling. Pmod represents such a decoupled system, and any

difference between this desired model and the true plant is penalized via the weight Wp.

The disturbance vector dl represents customer demands, whose values we wish the plant

output to track. Specifically these commands correspond to desired overall engine pressure

ratio, engine pressure ratio and high rotor speed. The disturbance vector d2 represents noise

or modeling error, to which the controller should be robust. By keeping the error vector

el small, good tracking of dl is ensured. Input and actuator modeling errors, actuator

magnitude and rate constraints and closed-loop bandwidth constraints are accounted for

in the control design via the Zl to Wl input/output pair. The input measurements to the

controller is Yc and the controller generates uc as control commands.

The actuator model Pact was derived from first principles model of the actuators in the
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ROCETS engine simulation and system identification techniques (seeSection 3.1). The
modelingobjective wasto match the time responseof the ROCETS enginesimulation with
the linearized actuator, sensorand enginemodelsare power code equilibrium points. The
actuator and sensormodels were derived for the sea level, standard atmosphereand zero
velocity flight condition. The actuator model is

Pact _-

20 0 0
s+20

0 20 0
s+20

0 0 5
s+5

2o_ 0 0
s+20

0 2o_ 0
s+20

0 0 5_
s+5

Its realization has three states. The actuator model depicted in the Figure 6.2 outputs actu-

ator positions u and actuator rates/t, to allow actuator rates to be penalized in the control

design. Note that actuator associated with the convergent throat area nozzle (AREANOZL)

is represented differently than the actuator model identified in Section 3.1. To minimize the

number of states in the control design problem, the original first order actuator model with a

lag is replaced by a first order transfer function model that captures the phase characteristics

of the original two state model.

The model-matching block Pmod was based on previous work in Reference [2]. The engine

variables OPR and N2 are dynamically coupled based on the physics of the turbofan engine.

Therefore the controller is designed to have the response of the engine high rotor speed (N2)

lag the response of OPR and EPR. It is desired that the engine response to OPR and EPR

request follow a second order model with natural frequency of 12 rad/sec and damping of

0.85. The engine response to N2 request should follow a second order model with natural

frequency of 2.5 rad/sec and damping of 0.85. The original engine model contained scaling

matrices ICS and OSC whose role was to normalize the input and output signals to controller

relative to one another. The input weight Wi is selected to be the I3x3 matrix. Therefore,

the normalized EPR, OPR and N2 commands are modeled as being of the same relative

magnitude.

Within the 7-/_ framework, the error between the desired engine response and the actual

engine response are weighted in magnitude and across frequency via the weight Wp. The

ideal models were derived based on the desired low frequency response of the engine. From

a performance perspective, matching the ideal model response is more important at low

frequency than high frequency (above 20 rad/s). Hence the performance weight Wv, which

penalizes the difference between the desired and the actual closed-loop response of the turbo-

fan engine, reflects the low frequency tracking accuracy desired. The larger the magnitude of

}_, the smaller the allowable difference between desired and actual output. In our designs,
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Wp is a first order low-pass weight given by

W_

_s _-1
200 _-_-_-_-, 0 0

0.-7b-_ + 1
a__ t-1

0 160_ 0
s..2- + 1

0 0 160 ,-Na-_-,_

This ensures good tracking of the response models in the bandwidth 1-10 rad/s, with little

or no DC error. At low frequency (below 0.1 rad/s) the Wp weight on the OPR corresponds
1

to DC errors of 2-5-6or 0.5% tracking error. The EPR and N2 tracking error at DC can be
1

16--6or 0.625%. At high frequency, the mismatch between actual and desired output is not

penalized. A magnitude plot of Wp is shown in Figure 6.3.
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Figure 6.3: Tracking Performance Weight Wp

An output disturbance model is included in the controller synthesis problem formulation to

provide robustness of the closed-loop system. The disturbance weight Wa is used to account

for errors between the linear engine model and the nonlinear model as well as limit the

bandwidth of control effort by ramping up at high frequency. Placing the disturbance at

the input to the engine model would require the weight Wa to possibly vary with power

code, as the plant gains change significantly across power code. To simplify the LPV gain-

scheduled control design, the disturbance model is put at the plant output, where a first-order

weight was found to be sufficient to limit controller bandwidth. We shall denote the output
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disturbance weight by B_.

S

Wd=8X 10 -s 0.-03+1 /3×3
S

3o5oo + 1

Multiplicative input uncertainty is included in the design to provide robustness to actuator

and input uncertainty, limit the control magnitude and rate commands and limit the band-

width of the closed-loop system. The uncertainty, modeled by A in Figure 6.2, is weighted

on the left by WL and on the right by WR to balance its effect on the 7-/_ control design.

B_ is a diagonal constant matrix, 1.76/3×3 and l_ is a constant 3 x 6 matrix

wR=[00 x3[023, x20]]0 0.28 "

The actuator deflections and rates are input to W R. They are used to generate a frequency

dependent uncertainty weight without the introduction of additional states to the design.

Figure 6.4 shows the frequency response of the three input uncertainty weights. These

weights imply that there is 16% uncertainty at low frequency in each input channel. At

2.5 rad/s, the uncertainty in the first two channels has risen to 100_ whereas channel three

reaches 100% input uncertainty at 3.2 rad/s. The amount of model uncertainty is significant

and does interact with the ability of the control design to meet the performance specifications.

Since the uncertainty model and performance specifications are in conflict, i.e. performance

is desired at frequencies for which the phase of the engine model is complete unknown (100%

or more input uncertainty), the 7-/_ controller will not be able to achieve an infinity norm

less than 1. The lowest achievable 7-/_ norm for the system for the given uncertainty weights

H_ and 1,_ and performance weight Vv_ is 5.

7-/_ controllers are synthesized for the open-loop intereconnection shown in Figure 6.2.
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6.1 Linear Point Designs

Ten 7400 controllers were synthesized, one for each plant, using the interconnection of

Fig. 6.2. The 7400-norm achieved for these designs ranged between 5.5 and 7.9. The 7.9

74oo-norm is associated with the 30000 power code and the 5.5 norm is associated with the

12000 power code. As the interconnection used has 19 states, so do each of the ten controllers.

In this study, no attempt is made to reduce the order of the 7ioo linear controllers.

Performance objectives were evaluated in the frequency and time domain. The frequency

analysis corresponds to the H00-norm from d to e, which we desire to be smaller than 1. As

noted in the previous section, there is a conflict in the level of modeling input uncertainty in

the frequency range of 1 to 20 rad/s and the performance objectives. The performance and

robustness requirements could not be achieved based on the problem formulation. Hence,

H00-norm values of as large as 8 were considered acceptable. The second judgment was

made in terms of our specified objective, through inspection of step responses. Tracking

error, decoupling, magnitude of actuator positions and rates were all evaluated in terms of

our original goals using the nonlinear ROCETS simulation of the turbofan engine.

The step response simulations for the linearized engine model with 7-/00 point design are

shown in Fig. 6.5. Fig. 6.5 demonstrates the ability of individual controllers (one designed

for each power code) to track the step commands. There are nine top plots in Fig. 6.5

corresponding to the three command inputs: OPRref, EPRref, and N2re f to outputs of the

engine model: OPR, EPR, and N2. The control design objective was to have a completely

decoupled response from the reference commands to the engine outputs. Note that the

dynamics of the engine vary significantly with power code. Based on the results of the

linear, 7400 point design controllers some inherent coupling exists between the diagonal and

off-diagonal.
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Forbrevity, wewill discussthe robustnessanalysisof threepoint designsat 3000,15000and
30000power codes.A plot of the magnitudesof the _o_ point designcontrollers is shown
in Figure 6.6. Basedon this plot, observethat the magnitude of the 7-t_ point designs
changeacrosspower code. This is consistent with the behavior of the open-loop engine
model Jacobianlinearizations. Loop-at-a-time gain and phasemargins were calculatedfor
all the 7-t_ point design controllers. They achievedat least 27 dB of gain margin at a
frequencyof 0.5 rad/sec and 74 degreesof phasemargin at a 0.5 rad/sec. Multivariable
input and output sensitivity and complementarysensitivity plots for the 7-/_ controllers
(solid lines) werecalculatedfor the three powercodes,seeFigure 6.7. The input sensitivity
andcomplementarysensitivity plots for the 7-/_point designareexcellentwith peaksbelow
1.3 acrossfrequency. The output sensitivity and complementarysensitivity plots are very
good at the low and mid power codeswith peaksless than 2.2, though they degrade to

a peak of 2.7 at 3 rad/s for the 30000 power code. This corresponds to the closed-loop

system being robustness to 35% full block uncertainty at the output of the system, If this is

deemed unacceptable, the weighting functions in the initial problem formulation may need

to be modified to improve the output sensitivity and complementary sensitivity of the 7-/_

controllers at high power codes.

Hence the closed-loop system is more sensitive to modeling errors at the output of the

plant than the plant input. This is to be expected since the control problem formulation

indicated that there was significantly more modeling error and uncertainty at the input to the

plant than at the plant output. The point design controller are not meant to be scheduled

across the operating envelope, rather the _ point design controller form a baseline for

comparison with the LPV control designs. The LPV controller is designed for the entire

operating envelope and is implemented in a nonlinear ROCETS simulation of the engine for

testing.
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6.2 LPV Design

The control design objective is to synthesize a controller which has decoupled command

response across power code variation. The flight envelope considered is sea level to 40,000

ft with environmental conditions varying from a polar to tropical day. This LPV controller

was synthesized using the interconnection in Fig. 6.2. The design model was based on ten

Jacobian linearization models at sea level, zero velocity and standard atmosphere conditions.

The same weighting functions used in the 7-/_ point designs are used in the LPV design,

though the turbofan engine model varies as a function of power code.

The LPV controller measures the errors in OPR, EPR and N2 responses and schedules on

a lagged measurement of power code. Recall that the commands to OPR, EPR and N2 are

generated by an outer-loop algorithms that is part of the PW STF 952 ROCETS simulation.

The outer-loop commands are a function of power code, flight condition, environmental

conditions and current state of the engine. The focus of this study is tracking these commands

since we can not directly effect them. The LPV synthesis algorithms require solving a linear

matrix inequality (LMI) over the entire parameter space. This is an infinite dimensional

problem. A finite dimensional LMI problem is derived by considering ten points of the flight

envelope. Recall from the 7-/_ point designs that the 7-/_-norm varied from 5.5 to 7.9 across

power code. To equalize the objectives across operating points, we have found it beneficial

to normalize each point model by the inverse of its achieved linear, time-invariant Ho_-norm.

After this scaling, each linear point design would now achieve an H_-norm of 1. Hence,

the induced £2 norm generated by the LPV controllers can be compared with the 7-/_ point

designs.

All LPV controllers were synthesized using 3-input/3-output state-space models of the

turbofan engine starting at 3K power code (idle) up to 30K power code, military power,

with a model every 3K. The Jacobian linearized models are used in the LPV design. A

lookup table is constructed for the steady-state control input values as a function of power

code and altitude. These steady-state trim inputs are added to the LPV control inputs to

generate the actual command to the engine. The LPV controllers are synthesized using the

p-Analysis and Synthesis and LMI Matlab Toolbox algorithms on a Red Hat Linux computer

with a 866 Mhz PIII processor. Both the non-rate bounded and rate bounded design include

the time taken to limit high frequency poles of the controller.

The non-rate bounded control design makes no assumption on the rate of variation of

the scheduled parameter, lagged power code. In essence, it allows this parameter to vary

infinitely fast. This may be overly conservative since the non-rate bounded LPV controller is

required to satisfied the prescribed performance and robustness requirements simultaneously
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at all power codes. As with the 7-/_ point designs, the non-rate bounded LPV controller has

19 states. No attempt was made to reduce the state order of the non-rate bounded design.

The induced/22 norm for the non-rate bounded LPV controller was 3.53 and took 121 CPU

seconds to synthesize. The value of the induced /22 norm corresponds to a factor of 3.53

degradation in the performance and robustness norms of the non-rate bounded controller

relative to the 7-/_ point design results.

The rate-bounded LPV control design directly accounts for the rate of variation of the

scheduled parameter, lagged power cocte. The rate-bounded LPV design is an approximation

of an infinite-dimensional problem as a finite-dimensional problem with a fixed set of basis

functions. The solution to the rate-bounded controller equations are based on parameter

dependent X and Y scalings. Three basis functions are considered to describe the X and

Y LPV solution matrices: the constant 1, a function of power code and the square of power

code. Denoting power code as p, the X and Y solutions matrices are:

X(p) = Xo + pXI + p2X2

Y (p) = Yo + prl + p2Y2

Currently there is no systematic approach to the selection of basis function. Our experience

has lead us to select basis functions that correspond to physical parameters that directly effect

the dynamic response of the plant model within the flight envelope. Selecting power code

and the squared of power code relates to our observations of how the linearized dynamics of

the turbofan engine change as a function of power code. The bound on the rate-of-variation

of power code is taken to be +8000/see.

Two non-rate and rate bounded LPV controllers are synthesized for each control problem.

The first formulates the standard non-rate/rate bounded LPV control algorithm. The second

uses the first solution and includes an additional constraint on the closed-loop system poles

at the grid points. The reason for the design of the second LPV controller is that the initial

LPV design often has very high frequency controller poles at the grid points. Since only ad

hoc model reduction algorithms are available, which may not eliminate the high frequency

poles, a constraint on the closed-loop system poles is added to the original LPV design

problem, the achievable induced 122 norm is relaxed 5% from its value in the initial design

and the LMI problem is resolved. All the LPV controllers discussed are based on the second

LMI solution with constraints on the closed-loop poles incorporated into the LMI equations.

For the rate bounded LPV control design, the induced/2_ norm for all parameter trajecto-

ries was 1.16. This indicates that the performance/robustness levels can be up to 1.16 times

worse that the corresponding linear point designs. A comparison between the induced /22

norm of the rate-bounded and non rate-bounded design indicates that the rate-bound nearly

recovers the performance of the 7-t_ point design (normalized to a norm of 1) with a factor
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of 3 reduction in the non rate-bounded induced norm. The rate-bounded LPV design with

three basis functions took 3501 CPU seconds to synthesize, a factor of 30 longer than the

non-rate bounded design. The extra computation is due to the increased number of basis

function parameters solved in the LMI optimization.

As with the point designs, the LPV controller has 19 states. A model reduction approach,

based on the alignment of the LPV grid point controller eigenvectors was applied to the

rate-bounded LPV controller. The rate-bounded controller was reduced to 12 states with

no degradation in the induced norm or performance/robustness and could be reduced to 7

states with little degradation. The original 19 state rate-bounded design had high frequency

poles at the grid points on the order of 2,000 rad/sec. The reduced 12 state controller had

its high frequency poles below 200 rad/sec and the 7 state controller had high frequency

poles below 50 rad/sec. All analysis and simulation results presented for the rate-bounded

controller are based on the 12 state reduced order rate-bounded LPV design.

Fig. 6.5 (bottom figure) shows step response results using a the grid point LPV controllers

at the equilibrium points. There is significant decoupling between the channels, though

not quite as good as that of individual point designs. (The point designs represent the

best we could hope to do for frozen parameter values). The poorest response in Fig. 6.5 is

associated with the LPV controller response at the 3000 power code. In contrast, however,

the performance of the LPV controller is guaranteed not only at the design points, but at

intermediate values of power code as well. The implementation of the gain-scheduled LPV

controller requires only linear interpolation of the state-space data for implementation.

Consider the robustness analysis of the LPV evaluated at power codes 3000, 15000 and

30000. A plot of the magnitudes of the rate-bounded LPV controller is shown in Figure 6.6.

The magnitude of the gain-scheduled LPV design at the grid points is very similar to the

optimal 7-/_ point designs. Loop-at-a-time gain and phase margins were calculated and all

the LPV point controllers achieve at least 27 dB of gain margin at a frequency of 3 rad/sec

and 72 degrees of phase margin at a 1.9 rad/sec. Multivariable input and output sensitivity

and complementary sensitivity plots for the 7/_ controllers (dashed lines) were calculated for

the three power codes, see Figure 6.7. The input sensitivity and complementary sensitivity

plots for the LPV grid point designs are excellent with peaks below 1.3 across frequency.

The output sensitivity and complementary sensitivity plots are very good at the low and

mid power codes with peaks less than 2.2, though they degrade to a peak of 2.7 at 3 rad/s

for the 30000 power code. This corresponds to the closed-loop system being robustness to

35% full block uncertainty at the output of the system. It is obvious from the loop-at-a-time

gain and phase margins and Figure 6.7 that the rate-bounded LPV design recovers all the

robustness properties of the 7-/_ point design controllers which is what was desired.
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Figure 6.8: Power code (solid) and altitude (dashed) as a function of time

Comparison with the 7-/= point designs, linear step responses of the LPV point controllers

indicate that the LPV point controllers have similar characteristics to the 7-/_ counterparts.

Hence we have recovered the linear performance and robustness of the original 7-/o_ point

design with the LPV gain-scheduled design while directly synthesizing a globally stable,

gain-scheduled multivariable controller.

6.3 Linear Parameter-Varying Simulation

The ROCETS nonlinear simulation is used to compare the baseline Pratt & Whitney con-

troller with the LPV control designs. These simulations are performed with reference inputs

to the power code, altitude and Mach number as a function of time. For some simulations,

altitude and Mach number are held constant and only power code varied. Figure 6.8 shows

the power code and altitude trajectory. Power code ranges from 3000 to 27000 and altitude

varies from sea level to 40,000 ft. Figure 6.9 presents the candidate speed profile for the

engine. Combined, Figures 6.8 and 6.9 represent a candidate stressful flight on the engine.

The LPV controllers were implemented in the ROCETS simulation as discussed in Chap-
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ter 2. The LPV controllers are gain-scheduled as a function of a lagged measurement of

power code via linear interpolation. The control trim inputs, based on the Jacobian lin-

earization, added to the LPV control inputs are scheduled as a function of lagged power

code and altitude. The nonlinear time responses of the LPV controllers are compared with

the baseline controller. The comparison is useful from the standpoint that the performance

and robustness of the baseline Pratt & Whitney multivariable controller was considered very

good by Pratt & Whitney engineers. Note that the baseline Pratt & Whitney controller was

scheduled as a scaled function of the air flow through the engine.

Figure 6.10 shows the response of the internal engine variables (OPR, EPR and N2) due to

the baseline controller inputs (WFPRIB, AREANOZL and VANEHPC). Figure 6.11 shows

normalized measurements, U1MVC, U2MVC, and U3MVC, provided to the baseline con-

troller and the normalized outputs YIMVC, Y2MVC, and Y3MVC. Note that in Figure 6.10

there is excellent tracking of OPR and EPR and as well as tracking of a lagged version of

N2. These responses for the baseline for comparison with the LPV controllers.

Figure 6.12 shows the response of the internal engine variables (OPR, EPR and N2) with

the non-rate bounded LPV controller and Figure 6.13 shows normalized measurements and

outputs of the controller. Note the similarity between the baseline controller commands,
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Figure 6.10, and the non-rate bounded LPV commands, Figure 6.12. Except for the small

transient that occurs at 1 second due to switching between the baseline controller and the

LPV controller, the engine response is nearly identical. The same excellent tracking of OPR

and EPR and lagged N2 is achieved. It is interesting to see that the normalized controller

YIMVC and Y3MVC commands are very similar. Though for Y3MVC, the baseline con-

troller commands a steady-state value of approximately 12 and the non-rate bounded LPV

controller requests a steady-state value of approximately 2. It appears that this has little

impact on the final N2 speed of the engine.

Figure 6.14 shows the response of the internal engine variables (OPR, EPR and N2) with the

rate bounded LPV controller and Figure 6.15 shows normalized measurements and outputs

of the controller. Note the similarity between the baseline controller commands, Figure 6.10,

the non-rate bounded LPV commands, Figure 6.12, and the rate-bounded LPV commands,

Figure 6.14. The same excellent tracking of OPR and EPR and lagged N2 is achieved. The

non-rate bounded and the rate-bounded LPV controller have very similar control commands,

even the steady-state value of Y3MVC, though the rate-bounded LPV controller has a a low

bandwidth. This can be observed based on the reduced level of high frequency activity

of the normalized control signals U1MVC and U2MVC (see Figures 6.13 and 6.15). The

reduced bandwidth of the rate-bounded LPV controller is exactly what is expected with the

introduction of bounds on the power code rate of variation.

The nonlinear ROCETS simulations with the LPV controllers implemented show that these

controllers are robust to significant changes in the plant dynamics. Recall that the LPV

controllers schedule only on lagged power code and were designed based on linearized engine

models at zero Mach, sea level and standard day atmosphere. The candidate trajectory

starts at sea level Mach 0.4 and reaches a peak altitude of 40,000 ft and speed of Mach

1.2. The performance of the LPV controllers is outstanding despite the large variation in

speed and altitude. The effect of sensor noise on the control algorithms is also of interest.

Therefore, sensor noise is added to the normalized measurements, U1MVC, U2MVC and

U3MVC prior to the controller receiving these signals.

Figures 6.16 and 6.17 show the response of the engine and controller variables with a

small amount (approximately 10%) of sensor noise on control input. The rate bounded LPV

controller is implemented in the ROCETS nonlinear simulation. There is no degradation of

the excellent tracking performance of the controller. Increasing the sensor noise to over 40%,

shown in Figures 6.18 and 6.19 leads to some degradation of the tracking performance though

the overall tracking performance is still adequate. Hence the rate-bounded LPV design is

very insensitive to small amounts of sensor noise as well as changes in the plant dynamics.

For comparison, Figures 6.20 and 6.21 show the response of the baseline controller with over

40% sensor noise. The baseline design is slightly more sensitive to the large amount of sensor
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noise than the rate-bounded LPV controller.

Similarly, there is no change in the tracking performance of the rate-bounded LPV con-

troller due to temperature fluctuation. Compare the response of the LPV controller on a

standard day, Figures 6.14 and 6.15, with the response on a polar day, Figures 6.22 and 6.23,

and a tropic day, Figures 6.24 and 6.25. Hence, the rate-bounded LPV controller is robust

to significant variations.

The tracking performance of the LPV controller is perhaps better illustrated by holding the

speed constant at zero Mach, standard atmosphere and a constant non-zero altitude. Power

code is varied as a function of time. Figures 6.26 and 6.27 show the response of the non-rate

bounded LPV controller at sea level. This compares well with the rate-bounded LPV design

at sea level, Figures 6.28 and 6.29. Figures 6.30, 6.31, 6.32 and 6.33 show the engine and

rate bounded LPV controller time responses at 15,000 and 30,000 ft altitude respectively. It

is obvious that the engine dynamics change dramatically as a function of altitude.
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Chapter 7

Summary

Recent advances in robust control synthesis for LPV systems were applied to a high fidelity,

nonlinear simulation of a turbofan engine under this research program. The control objective

was to decouple the multivariable system into three independent channels with minimal

cross-coupling, subject to actuator magnitude and rate limitations. 7-/_ point designs

provided an initial starting point, giving an indication of the performance which might be

expected of an LPV controller. After obtaining reasonable point designs, an LPV controller

was synthesized and its performance evaluated.

The nonlinear ROCETS simulation of the Pratt & Whitney engine with the LPV controllers

implemented achieved excellent tracking of the command signals with small magnitude ac-

tuator commands. The rate-bounded LPV controller were robust to significant variations in

the engine model dynamics, atmospheric conditions and sensor noise. Excellent tracking per-

formance was achieved it all scenarios except in the presence of large sensor noise. Although

the synthesis of LPV controllers are computationally more intensive than individual linear

point designs, the guaranteed and actual performance and robustness of the gain-scheduled

LPV designs indicate the benefit of the rate-bounded LPV control designs far out weighs

their computation time expense.
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Appendix A

User's Guide

A.1 Introduction

This Appendix is intended to be used as a user's manual for the UNIX script files, Matlab

M files, and the modified SCIP transient engine simulations used in this work. The reader

interested in details of the SCIP transient engine simulation is directed to [1].

A.2 Nonlinear Simulation

To simplify the operation of the nonlinear simulation, a series of UNIX script files were

written. They run the correct files and rename the input and output files more descriptively

then the simulation does alone. The file runorig runs the original program provided to the

University or Minnesota. The file runptdes reads in a point-design controller to replace the

Pratt & Whitney controller in the simulation. The file runlpv reads in a LPV controller to

replace the Pratt & Whitney controller. It is assumed in the following discussions that these

script files are being used. These script files are discussed further in Section A.4.

The original and modified versions of the SCIP transient engine simulation read an input file

containing all run parameters, and generate four output files. The input file must end with

the extension ".dat". For example filename, dat is an acceptable name. Three of the output

files are automatically named filename, output, filename, runin, filename, errors. The

name of the fourth output file is chosen by the user in f i lename, dat. The files f ilename, run in,

filename, errors record errors in reading and processing the input file and can be used for

trouble-shooting. The file filename.output, also referred to as the "print file", can be
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usedto look at specificdata points, and holds any generatedlinear models. The fourth file
containsthe data suitable for plotting in Matlab. It is often referred to asthe "plot file".

Although the input filesare thoroughly discussedin [1],a quick tutorial is provided on the
most relevantaspectsto this work in terms of an examplecontainedin sectionA.3.

The input file is organized in seven blocks of similar function type. The blocks are
namedSCHEDULES, INPUTS, RESTART, OUTPUT, INTEGRATION, EXCEPTIONS,
and BALANCE EXCEPTIONS. Eachblock is started with a DEFINE commandandended
with an END command.

DEFINE (block type)

. . ,

END (block type)

The blocks are read into the simulation in a top-down fashion, so the user must sequence

the blocks accordingly.

A.A.2.1 SCHEDULES

The SCHEDULES block is used to define univariant or bivariant curves representing func-

tional relationships for the model. The curves can be functions of time or steady state point.

The example file defines a schedule called SCHFGR. It is a schedule of thrust (XFCFGR)

with time. The schedule data is listed in standard map reader format; the first two entries

are zero, the third and forth indicate the number of data points of the first and second

independent parameters. The remaining entries are data of the first independent parameter,

the second independent parameter, and the dependent parameter respectively. The example

file's schedule is univariant with time. It has a total of eight data points. Hence the third

entry is "8.0" and the forth is "0.0".

The simulation assumes ramps between each defined point, so a step input can be approx-

imated by placing points close together. In the example, a 200 lbf step is defined at 21.00

seconds. The input power code schedule, along with the output OPR, is plotted in Figure

A.1.

A.A.2.2 INPUTS

The INPUTS block is used to define all inputs to the simulation. The example defines the

altitude (ft), mach number, side slip(degrees), and angle of attack (degrees) to be zero. It
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definesthe engine face static pressureto be 14.696psi. The thrust is referencedto the
scheduledefinedin the precedingSCHEDULESblock as SCHFGR.

A.A.2.3 RESTART

The RESTART block is used to specify a value for the GUESS routine in the simulation.

As in the example file, "0.0" is normally used.

A.A.2.4 1st OUTPUT

The OUTPUT block defines the parameters the simulation is to record in its output files. The

example file tells the simulation to record all the data points of OPR, EPR, N2, OPRREQ,

EPRREQ, N2REQ, and XFCFGR. It instructs the simulation to print them to a file called

test. data.

A.A.2.5 1st RUN

The RUN block provides the simulation with general information on the type of run required.

The first RUN block in the example file tells the simulation to run one point to steady state

using a maximum of of 200 iterations.

A.A.2.6 BALANCE EXCEPTIONS

The BALANCE EXCEPTIONS block is used to turn on or off simulation balances.

A.A.2.7 2nd OUTPUT

The 2nd OUTPUT block in the example file turns off printing to the print file (the . output

file in our case).

A.A.2.8 2nd RUN

The 2nd RUN block in the example file runs a transient simulation and writes the data

requested in the OUTPUT block every 0.05 seconds. It stops the simulation at 30 seconds,
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no matter what is provided in the SCHEDULE block or elsewherein the input file.

A.A.2.9 Hints

• There is a limit as to how many data points can be plotted in a run. If the simulation

runs, but the plot file has only recorded a single data point, although you instructed

otherwise, try increasing the plot time so you're not asking for as many points.

• While writing input files. Do not use tabs. Only use spaces.

• A * in the first column indicates a comment line

A.3 Example input file

*<DEBUG>

* SClP TRANSIENT ENGINE MODEL (CCD1453-00.0) *

* EXAMPLE FILE *

DEFINE SCHEDULES

,

* THRUST REQUEST T0 ENGINE C0NTROL AS A FUNCTION 0F TIME

SCHEDULE: SCHFGR IS XFCFGK = F(TIME ) ;

SET SCHEDULE: SCHFGR= 0.0, 0.0, 8.0, 0.0,

0.00, 5.00, 9.5, 12.5, 19.00, 21.00,

21.01, 30.0,

27000.0, 27000.0, 27100.0, 27100.0, 26900.0, 26900.0,

27100.0, 27100.0;

END SCHEDULES

* INPUTS *
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* FLIGHT CONDITION

ALT = 0.0,

XM = 0.0 ,

* FLIGHT CONTROL INTERFACE

XFCFGR = SCHEDULE SCHFGR

XFCAOA = 0.0 ,

XFCBET = 0.0 ,

XFCPO = 14.696 ,

XFCMNL = 0.0 ,

IENGCON = 1

END INPUT

*******************************

* CALL FIRST GUESS ROUTINE *

DEFINE RESTART

GUESS = 0.0;

END RESTART

****************************

* OUTPUT OPTIONS *

****************************

DEFINE OUTPUT

STEADY-STATE PRINT :

TRANSIENT PRINT

PRINT

PLOT

OFF

OFF

ALL,

ALL,

0PR, EPR, N2,

YIMVC, Y2MVC, Y3MVC,

0PRREQ, EPRREQ, N2REQ,

XFCFGR;
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PLOTFILE : test.data ;

PLOT TITLE : EXAMPLE FILE DATE;

END OUTPUT

DEFINE RUN

STEADY STATE : POINTS = I., MAXPASS = 200;

END RUN

TURN OFF STEADY STATE ENGINE CONTROL BALANCES *

DEFINE BALANCE EXCEPTIONS

ACTIVATION FOR ANOZLBL2

ACTIVATION FOR WFPRBBL2

ACTIVATION FOR WFABIBL2

ACTIVATION FOR WFAB2BL2

ACTIVATION FOR WFAB3BL2

ACTIVATION FOR VNHPCBL2

ACTIVATION FOR VNFANBL2

ACTIVATION FOR VNECSBL2

ACTIVATION FOR QDOTEHEX

END BALANCE EXCEPTIONS

: OFF ;

: OFF

: OFF

: OFF

: OFF

: OFF

: OFF

: 0FF

: OFF

* TURN OFF PRINT OUTPUT (PLOT OUTPUT IS STILL ON) *

*******************************************************

DEFINE OUTPUT

PRINT : NOPRINT ;

END OUTPUT

* RUN THE TRANSIENT *

DEFINE RUN

TRANSIENT: DT = .0125 , PRINT TIME=5.0, PLOT TIME=O.05,

STOP TIME= 80.00 ;

END RUN
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Figure A.I: Power Code and Plant output (P4/P2) from Example File

A.4 UNIX script files and Matlab M files

A.A.4.1 runorig

The script file runorig is used to run the original simulation. After creating an input file as

explained in Section A.2 type

max,. runporig filename

This will run the simulation, creating the four output files.

A.A.4.2 runptdes

The script file runptdes can be used to run a single point controller. Suppose a point design

controller in a # tool system matrix format named sys is to be tested in the nonlinear
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simulation. The first step is to convert the controller into a Kblock format. This can be

done using the matlab function sys2Kblock.m. The resulting matrix should then be saved

in ascii format to a file named Kblock.

>> Kblock=sys2Kblock(sys,f21);

>> save -ascii Kblock Kblock ;

The next step is to create an input file as described in Section A.2. If the input file is named

filename, dat, the nonlinear simulation can be run by typing

max% runptdes filename

This will run filename.dat using the controller contained in the file Kblock. Note that

runptdes only runs on sun4 architecture, and Kblock must be in the same directory as

test.dat.

A.A.4.3 runlpv

To run a LPV controller scheduled on power code in the nonlinear simulation, the script file

runlpv can be used. The LPV controller must be in a ascii column format as detailed in

the paper, and saved as LPVdata.

>> save -ascii LPVdata Ipv_controller;

All input file, as outlined in Section A.2, can then be run with runlpv. For example, if the

input file is named filename, dat

max_ runlpv filename

Note that LPVdata must be in the same directory as test.dat.

A.A.4.4 data2m.m

Once a nonlinear sinmlation has been run, the data in the plot file can be easily loaded in

matlab with data2m.m. The syntax is

[m,names] =data2m (datafile, flag) ;
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Here datafile is a string containing the name of the data file. Flag is either "time"
or "point". If your simulation was a time responseand savedin filename.data,use the
command

>> [m,names] =data2m ('filename, data', 'time' );

If your simulation was scheduled as something other than time and saved in f ilename, data,

use the command

>> [m,names] =data2m ('filename, data', 'point ');

The matrix names contains the names of all variable contained in the varying matrix m.

A.A.4.5 engplot.m

Once data from a data file had been loaded into Matlab, it can be plotted with engplot.

For example if the data matrix m contains data for 0PK, you can use the command

>>engplot(m,names,'0PR');

A.5 Plant Linearization

Linear plants can be created by the nonlinear simulation with a LINEARIZATION block in the

input file. As before, I will illustrate usage with an example file. The file can be found in

section A.6

The blocks used for linearization follow the same format as those described above. Two

blocks, LINEARIZATION and LINEAKIZATION EXCEPTIONS define the linearization to be per-

formed. Typically the base point about which linearization is desired, is defined through a

steady state run

DEFINE RUN

STEADY STATE

END RUN

: POINTS = 1., MAXPASS = 200;
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A.A.5.1 INTEGRATION DEFAULTS and EXCEPTIONS

The states are controlled through the INTEGRATION DEFAULTS and EXCEPTIONS

blocks and the balances through the BALANCE DEFAULTS and EXCEPTIONS blocks.

DEFINE INTEGRATION EXCEPTIONS

ACTIVATION FOR SN2 : STEADY STATE ;

ACTIVATION FOR PTECHD : STEADY STATE ;

ACTIVATION FOR TTECHD : STEADY STATE ;

ACTIVATION FOR SNECS : STEADY STATE ;

ACTIVATION FOR PT65 : STEADY STATE ;

END INTEGRATION EXCEPTIONS

DEFINE BALANCE EXCEPTIONS

ACTIVATION FOR ANOZLBL2 : OFF

ACTIVATION FOR WFPRBBL2 : OFF

ACTIVATION FOR WFABIBL2 : OFF

ACTIVATION FOR WFAB2BL2 : OFF

ACTIVATION FOR WFAB3BL2 : OFF

ACTIVATION FOR VNHPCBL2 : OFF

ACTIVATION FOR VNFANBL2 : OFF

ACTIVATION FOR VNECSBL2 : OFF

ACTIVATION FOR QDOTEHEX : OFF

END BALANCE EXCEPTIONS

A.A.5.2 LINEARIZATION PRINT

The LINEARIZATION PRINT option must be turned on in the OUTPUT block

DEFINE OUTPUT

LINEARIZATION PRINT

END OUTPUT

: ON ;

A.A.5.3 LINEARIZATION

The LINEARIZATION block is used to define the inputs and outputs of the desired linear

model.
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DEFINE LINEARIZATION

INPUTS : WFPRIB , AREANOZL, VANEHPC;

OUTPUTS : PT2, PT4, PT6, SN2;

END LINEARIZATION

A.A.5.4 Output file

The resulting A,B, C, and D matrices are written to the output file. These matrices can

be automatically loaded into matlab using output2sys.m (see section A.A.7.1). Note the

nonlinear simulation may return error messages in the output file. These errors can generally

be ignored, because of a known error checking problems with the program.

A.6 Example linearization input file

DEFINE INPUT

* FLIGHT CONDITION

ALT = 0.0 ,

XM = 0.0 ,

* FLIGHT CONTROL INTERFACE

XFCFGR = 3000 ,

XFCAOA = 0.0 ,

XFCBET = 0.0 ,

XFCPO = 14.696 ,

XFCMNL = 0.0 ,

IENGCON = I

END INPUT

DEFINE RESTART

GUESS = 0.0;

END RESTART

DEFINE OUTPUT

PRINT : DUMPALL

STEADY-STATE PRINT : OFF

TRANSIENT PRINT : OFF

PLOT : ALL,
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WFPRIB,AREANOZL,VANEHPC,
PT2, PT4, PT6, SN2;

PLOTFILE : imp.data ;

PLOT TITLE : LINEARIZE ;

END OUTPUT

DEFINE RUN

STEADY STATE : POINTS = I., MAXPASS = 200;

END RUN

DEFINE INTEGRATION EXCEPTIONS

ACTIVATION FOR SN2

ACTIVATION FOR PTECHD

ACTIVATION FOR TTECHD

ACTIVATION FOR SNECS

ACTIVATION FOR PT65

END INTEGRATION EXCEPTIONS

: STEADY STATE ;

: STEADY STATE ;

: STEADY STATE ;

: STEADY STATE ;

: STEADY STATE ;

* TURN OFF STEADY STATE ENGINE CONTROL BALANCES

DEFINE BALANCE EXCEPTIONS

ACTIVATION FOR ANOZLBL2

ACTIVATION FOR WFPRBBL2

ACTIVATION FOR WFABIBL2

ACTIVATION FOR WFAB2BL2

ACTIVATION FOR WFAB3BL2

ACTIVATION FOR VNHPCBL2

ACTIVATION FOR VNFANBL2

ACTIVATION FOR VNECSBL2

ACTIVATION FOR qDOTEHEX

END BALANCE EXCEPTIONS

: OFF

: OFF

: OFF

: OFF

: OFF

: OFF

: OFF

: OFF

: OFF

DEFINE OUTPUT

LINEARIZATION PRINT : ON

END OUTPUT

DEFINE LINEARIZATION

INPUTS : WFPRIB , AREANOZL, VANEHPC;
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OUTPUTS : PT2, PT4, PT6, SN2;

END LINEARIZATION

DEFINE LINEARIZATION EXCEPTIONS

NORMALIZER FOR VANEHPC : i00.0 ;

END LINEARIZATION EXCEPTIONS

DEFINE BALANCE EXCEPTIONS

ACTIVATION FOR ANOZLBL2 : OFF ;

ACTIVATION FOR WFPRBBL2 : OFF ;

ACTIVATION FOR VNHPCBL2 : OFF ;

ACTIVATION FOR VNFANBL2 : OFF ;

ACTIVATION FOR VNECSBL2 : OFF ;

ACTIVATION FOR WFABIBL2 : OFF ;

ACTIVATION FOR WFAB2BL2 : OFF ;

ACTIVATION FOR WFAB3BL2 : OFF ;

ACTIVATION FOR QDOTEHEX : ON ;

END BALANCE EXCEPTIONS

DEFINE RUN

LINEARIZE : ;

END RUN

A.7 MORE UNIX SCRIPT and MATLAB files

A.A.7.1 output2sys.m

The Matlab M file output2sys.m reads the linearized plant from the simulation output file

to generate a system matrix. If the output file is named filename, output, for example, the

following command will create a system matrix names sys

>> sys=output2sys ( 'filename ' ) ;
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A.A.7.2 linearize

The UNIX script file linearize can be used to generate the plant models at 3000, 6000,

9000, ... 30000 lbf thrust by replacing the line

XFCFGR = 3000

in the input file with

XFCFGR = <INSERT_POINT>

The script replaces <INSERT_POINT> with the values listed in the ascii file points generating

a series of linearized plant models.

For example, to create a series of linearized plants at sea level, the INPUT block should have

the form

DEFINE INPUT

* FLIGHT CONDITION

ALT = 0.0 ,

XM = 0.0 ,

* FLIGHT CONTROL INTERFACE

XFCFGR = <INSERT_POINT>

XFCAOA = 0.0 ,

XFCBET = 0.0 ,

XFCPO = 14.696 ,

XFCMNL = 0.0 ,

IENGCON = 1

* IENGCON = 0 ,

END INPUT

The file points is the simple ascii file:

3000.0

6000.0

9000.0

12000.0

15000.0

18000.0
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21000.0

24000.0

27000.0

30000.0
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Appendix B

FORTRAN Source Code

This appendix contains the FORTRAN subroutines written for this project. Small explana-

tions are included before each.

B.1 Point Design Implementation

This section contains the FORTRAN code written to implement point design controllers into

the nonlinear simulation.

B.B.I.1 compute_state

The subroutine compute_state is called by the larger simulation. It, in turn, calls all the

other subroutines which read in the controllers and updates the controller states and outputs.

C

Subroutine compute_state(FGRREQ,CRCYBl, CRCYB2, CRCYB3,Ulin,

U2in, U3in, Ylout, Y2out, Y3out)

FORMAL PARAMETERS

REAL Ulin, U2in, U3in

REAL Ylout, Y2out, Y3out

REAL Ylouta, Y2outa, Y3outa

REAL FGRREQ
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REAL Min(24,1),

REAL P(72,8)

REAL A(24,24)

REAL St(21)

Mout(24,1)

REAL Ylbase, Y2base, Y3base

Integer counter

save St, counter, A

data (St(i), i=1,21)/21_0.0/

data counter /0/

counter=counter+l

if(counter.eq.l) then

CALL GETMXA8(P,72)

Call REFORMMX(P,72,8,A,24,24)

endif

C---MULTIPLY ACROSS THE CONTROLLER

11

Do 11 i=1,21

Min(i,l)=St(i)

Continue

Min(22,1)=Ulin

Min(23,1)=U2in

Min(24,1)=U3in

CALL MULTMX(A,24,24,Min,24,I,Mout,24,1)

22

Do 22 i=1,21

St(i) = Mout(i,l)

Continue

Ylouta = Mout(22,1)

Y2outa = Mout(23,1)

Y3outa = Mout(24,1)

CALL Iinterp(CRCYBI,FGRREQ,Ylbase)
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CALL Iinterp(CRCYB2,FGRREQ,Y2base)

CALL Iinterp(CRCYB3,FGRREQ,Y3base)

Ylout = Ylouta + Ylbase

Y2out = Y2outa + Y2base

Y3out = Y3outa + Y3base

RETURN

END

B.B.1.2 linterp

The subroutine linterp is used to linearly interpolate between two points. The vector T

contains x-y data in standard mapping format. A value of x is input as Xin and linterp

returns the corresponding value of y in Yout.

Subroutine linterp(T,Xin,Yout)

C PURPOSE

C Linearly Interpolate between points on a function f(x).

C Given point on f(x), linterp returns f(x) for any value of x.

C

C

C SYNTAX

C CALL linterp(T,Xin,Yout)

C

C T : Data in PW's mapping format (which could be called with tabx2)

C

C Variables passed in:

DIMENSION T(*)

REAL Xin, Your

C Internal Variables:

REAL nx,n

REAL X(IO), Y(IO)
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INTEGER i

REAL X_high, X_low, Y_high, Y_low

nx = T(3)

Do 500, n=l,nx

X(n)=T(4+n)

Y(n)=T(4+n+nx)

500 CONTINUE

if (Xin.lt.X(1)) then

Yout=Y(2)-(Y(2)-Y(1))/(X(2)-X(1))*(X(2)-Xin)

elseif (Xin.gt.X(nx)) then

Yout=Y(nx-l)+(Y(nx)-Y(nx-l))/(X(nx)-X(nx-l))*(Xin-X(nx-l))

6OO

else

i=l

if (Xin.gt.X(i)) then

i=i+l

go to 600

endif

X_high=X(i)

X_low =X(i-l)

Y_high=Y(i)

Y_low =Y(i-l)

% 2nd: Linerly interpolate the exact value

% the ratio xfcfgr/(pchigh-pclow) = opr/(oprhihg-oprlow)

Yout=(Xin-X_low)/(X_high-X_low)*(Y_high-Y_low) + Y_low

endif

END

103



B.B.1.3 GETMXA8

The subroutine GETMXA8 reads in the controller from a file named Kblock. It inputs the

number of rows to read (r). It returns the matrix read as a r x 8 column matrix A.

SUBROUTINE GETMXA8(A,r)

REAL cl, c2,

Integer r

REAL A(r,8)

INTEGER n

c3, c4, cS, c6, c7, c8

n=O

OPEN (Unit=f5, File='Kblock', STATUS='OLD')

123 READ (15,124,END=125) cl, c2, c3, c4, c5, c6, c7,

124 FORMAT(2X,E14.7,2X,E14.7,2X,E14.7,2X,E14.7,

Pz 2X,E14.7,2X,E14.7,2X,E14.7,2X,E14.7)

n=n+ 1

A(n i) = cl

A(n 2) = c2

A(n 3) = c3

A(n 4) = c4

A(n 5) = c5

A(n 6) = c6

A(n 7) = c7

A(n 8) = c8

GOTO 123

125 n=O

CLOSE (UNIT= 15)

RETURN

END

c8

B.B.1.4 REFORMMX

The subroutine REFORMMXreforms the matrix A (read in by GETMXS) into the correct three

input, three output, 21 state format.
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SUBROUTINE REFORMMX(A,RI,CI,B,R2,C2)

C THIS SUBROUTINE REFORMS THE 72 by 8 matrix into a 24 by 24

INTEGER RI, R2, CI, C2, BL, R, C, BLOCKS, AR

REAL A(RI,CI)

REAL B(R2,C2)

BLOCKS=RI/R2

4

3

2

Do 2 BL=I,BLOCKS

Do 3 R=I,R2

Do 4 C=I,C1

BC=C+CI* (BL-1)

AR=R+R2*(BL-1)

B(R,BC)=A(AR ,C)

Continue

Continue

Continue

RETURN

END

B.B.1.5 MULTMX

The subroutine MULTMXinputs the matrices A and B along with their dimensions, and returns

the product of A • B in the matrix C.

SUBROUTINE MULTMX(A,AROW,ACOL,B,BROW,BCOL,

C,CROW,CCOL)

THIS SUBROUTINE MULTIPLIES ARRAYS A AND B AND STORES RESULT AS C

INTEGER AROW,ACOL,BROW,BCOL,CROW,CCOL,I,J,K

REAL A(AROW,ACOL),B(BROW,BCOL),C(CROW,CCOL)

LOGICAL ERROR

ERROR= .FALSE.

IF (ACOL.NE.BROW) ERROR = .TRUE.
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15

25

30

IF (AROW.NE.CROW) ERROR = .TRUE.

IF (BCOL.NE.CCOL) ERROR = .TRUE.

IF (ERROR) THEN

PRINT*, 'ERROR IN THE ARRAY SIZES'

Stop

ELSE

DO 30 I=J,CROW

DO 25 J=I,CCOL

C(I,J) = 0.0

DO 15 K=I,ACOL

C(I,J) = C(I,J) + A(I,K)*B(K,J)

CONTINUE

CONTINUE

CONTINUE

ENDIF

RETURN

END

B.2 Power Code LPV Implementation

B.B.2.1 compute_state

The LPV Implementation, as with the point design code, uses compute_state as it's main

routine and calls all other subroutines from it.

Subroutine compute_state(FGRREQ, CRCYBI, CRCYB2, CRCYB3, Ulin,

& U2in, U3in, Ylout, Y2out, Y3out)

C FORMAL PARAMETERS

REAL Ulin, U2in, U3in

REAL OREQ, EREQ, NREQ

REAL Ylout, Y2out, Y3out

REAL Ylouta, Y2outa, Y3outa
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REAL FGRREQ

REAL Min(33,1), Mout(33,1)

REAL A(33,33)

REAL St(30)

C YBASE VARIABLES

REAL Ylbase, Y2base, Y3base

save St

data (St(i), i=I,30)/30.0.0/

CALL GETMXA (FGRREQ, A)

C---MULTIPLY ACROSS THE CONTROLLER

ii

Do II i=1,30

Min(i,l)=St(i)

Continue

Min(31,1)=Ulin

Min(32,1)=U2in

Min(33,1)=U3in

CALL MULTMX(A,33,33,Min,33,I,Mout,33,1)

22

Do 22 i=1,30

St(i) = Mout(i,l)

Continue

Ylouta = Mout(31,1)

Y2outa = Mout(32,1)

Y3outa = Mout(33,1)

CALL

CALL

CALL

linterp(CRCYBi,FGRREQ,Yibase)

linterp(CRCYB2,FGRREQ,Y2base)

Iinterp(CRCYB3,FGRREQ,Y3base)
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Ylout = Ylouta + Ylbase
Y2out = Y2outa + Y2base
Y3out = Y3outa + Y3base

RETURN

END

B.B.2.2 GETMXA

The subroutine GETMXA accepts a powercode as input and returns the linearly interpolated

controller for that powercode.

Cm ..........

SUBROUTINE GETMXA(PC,BIGA)

THIS IS THE LPV SUBROUTINE

This subroutine reads in a location within a given power code matrix to

*find percent values of the four corners around it. Then new A,B,C and D

*matricies are computed from these percent values. If the location

*given does not fall within the power code matrix the subroutine will

*not run and will return a value of ingrid=0.

* Required input to subroutine:

G - Gigantic matrix, power code and altitude matrix organized

left to right, top to bottom such that all power codes

at a given altitude run consecutively. Also single column

so single matircies A through D also run across the rows.

ex [G] = [ [A] WHERE [A] =

[B]

[C]

[D](i,I)

[A]

[B]

[C]

[D](I,2)

[(1,1)

(1,2)

(1,3)

(2,1)

(2,2)
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[A]

[B](2,i)

PC - POWER CODE

VEC - power code and iltitude matrix (WAT2)

il - length of PC vector (3,6,9,12,15,18,21,24,27,30) so I0

* Output of subroutine:

*

*

*

*

* Temporary variables:

ingrid - returns 1 if located within WAT2 matrix and

returns 0 if not located within WAT2 matrix and stops

A,B,C,D - new matricies computed from G

* S - temporary matrix not passed through

* alpha.- percent location of WAC2 between points

**********************************************************************

C

integer nr,nc,nx,ny,nu,il,i,j,tl,bl,ii,jj,nt

parameter(il=lO,nx=30,ny=3,nu=3)

real A(30,30),B(30,3),C(3,30),D(3,3)

real alpha,Stmp(IO89),VEC(IO),BIGA(33,33)

real PC, temp

real G(I0890)

Integer counter

C ReadLPV VARIABLES

Integer nxtrue

Real LPVin(10890)

save counter, G

data counter /0/

counter=counter+l
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nc=nx+nu

nr=nx+ny
*

* Get PC vector

VEC(1)= 3000 0

VEC(2)= 6000 0

VEC(3)= 9000 0

VEC(4)= 12000 0

VEC(5)= 15000 0

VEC(6)= 18000 0

VEC(7)= 21000 0

VEC(8)= 24000.0

VEC(9) = 27000.0

VEC(IO)=30000.O

* Logic function to make temp in bounds

,

temp=PC

if(PC.LT.VEC(1))temp=VEC(1)

if(PC.GT.VEC(il))temp=VEC(il)

,

* P_EAD in G (found through KeadLPV and PadLPV)

,

if(counter.eq.1) then

Call readlpv(nxtrue,LPVin)

Call padLPV(nxtrue,LPVin,G)

endif

* Find contributions of each side and calculate start and end

* point of first matrix (tl=top limet, bl = botom limit)

alpha=O.O

do 20 i=l,il-1

if(temp. GE.VEC(i).AND.temp.LE.VEC(i+l))then

if(temp. NE.VEC(i))then

alpha=(temp-VEC(i))/(VEC(i+1)-VEC(i))
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end if

tl=nr*nc*(i-l)+l

bl=nr*nc*i

goto 30

end if

20 continue

,

* Compute new A,B,C, and D matricies

,

30 nt=nr*nc

ii=O

do 40 i=tl,bl

ii=ii+l

C

4O

C

50

60

C

70

80

C

Stmp(ii)=G(i)+alpha*(G(i+nt)-G(i))

continue

Make A

ii=O

do 60 i=l,nx

do 50 j=l,nx

ii=ii+l

A(i,j)=Stmp(ii)

continue

continue

Make B

ii=nx*nx

do 80 i=l,nx

do 70 j=l,nu

ii=ii+l

B(i,j)=Stmp(ii)

continue

continue

Make C--

ii=nc*nx

do i00 i=l,ny

do 90 j=l,nx

ii=ii+l
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90

100

C

110

120

121

122

123

C

124

125

126

C(i, j)=Stmp(ii)

c ont inue

continue

•Make D

ii=nc*nx+nx*ny

do 120 i=l,ny

do II0 j=l,nu

ii=ii+l

D(i, j)=Stmp(ii)

cont inue

continue

.Make it one large matrix .....

do 123 i=l,nx

jj=nx

do 121 j=l,nx

BIGA(i,j)=A(i,j)

continue

do 122 j=l,nu

jj=jj+l

BIGA(i,jj)=B(i,j)

cont inue

continue

ii=nx

do 126 i=l,ny

jj=nx

ii=ii+l

do 124 j=l,nx

BIGA(ii,j)=C(i,j)

continue

do 125 j=l,nu

jj=jj+l

BIGA(ii,jj)=D(i,j)

continue

continue
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end

B.B.2.3 padLPV

The subroutine padLPV inputs the LPV vector read in by readlpv along with the number

of states of the LPV controller, and returns a LPV vector that has been padded with zeros

so that all controllers have 30 states.

,

C This subroutine rearranges LPVin by moving the zeros

C according to nx. (Largest possible is 30 states, 10 pc vec)

C

Subroutine padLPV(nx,LPVin,LPVout)

Integer nx, i, j, loc, locin, pclength

Real LPVin(10890), LPVout(10890)

C .... A

21

pclength=lO

loc=O

locin=O

Do 99 k=l,pclength

Do 1 i=l,30*(30-nx)

loc=loc+l

LPVout(loc)=O

Continue

Do 2 i=l,nx

Do 21 j=l,30-nx

loc=loc+l

LPVout (loc)=O

Continue

Do 22 j=1,nx
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22

2

loc=loc+l

locin=locin+l

LPVout(loc)=LPVin(locin)

Continue

Continue

C .... B

Do 3 i=l,3*(30-nx)

loc=loc+l

LPVout(loc)=O

Continue

Do 4 i=l,nx*3

loc=loc+l

locin=locin+1

LPVout(loc)=LPVin(locin)

Continue

C .... C

51

52

5

Do5i=1,3

Do 51 j=l,30-nx

loc=loc+l

LPVout(loc)=O

Continue

Do 52 ]=1,nx

loc=loc+1

locin=locin+l

LPVout(loc)=LPVin(locin)

Continue

Continue

C .... D

Do 6 i=I,9

loc=loc+l

locin=locin+l

LPVout (loc) =LPVin (loc in)
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6 Continue

99 Continue

End

END subroutine

B.B.2.4 readLPV

The subroutine readlpv reads in the LPV vecctor from an external file named LPVdata and

returns it along with the number of states contained in each of the vectors controllers. It

assumes there are a total of 10 controllers in the LPV vector.

C

C This subroutine reads in the LPV controller from LPVdata

C It must be called before compute_state b/c it provides the

C number of states to be used in compute_state

C (Assumes PCvec length of I0, Max number of states=30)

C

9

10

11

Subroutine readlpv(nxi,LPV)

Integer num, nxi, counter

Real LPV(I0890), LPVlocal(10890),

save counter, LPVlocal, nx

nx

data counter /0/

counter=counter+l

if(counter.eq.l) then

num=O

OPEN (Unit=19, File='LPVdata', STATUS='OLD')

num=num+ 1

READ(19,10,end=11) LPVlocal(num)

FORMAT(2X,FI4.7)

go to 9

CLOSE(UNIT=Ig)
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endif

nx=sqrt(real(num/lO))-3

nxi=int(nx)

12

do 12 i=l,num

LPV(i)=LPVlocal(i)

continue

END

C END subroutine

The LPV implementation also calls the subroutines linterp and mutlmx which are listed

in the Point Design section above.

B.3 Compilation

The full engine simulation consists of three FORTRAN files and an assortment of auxiliary

files containing common data blocks. The main files are

ccd1453_eng_con.f

ccd1453..main.f

ccd1453_roc_util.f

ccd1453_eng_mod.f

ccd1453_roc_.run.f

The auxiliary files need are

CLCASCOM

CLCCOM

ECSCASCOM

ECSCCOM

NCCCOM

NCCOM

NCSCOM

SHKCCOM
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To compilethe programwith a new control algorithm copy in into ccd1453_eng_con,f. For
example, if the new control algorithm was in a file namednewcontrol, f, type

cp newcontrol.f ccd1453_eng_con.f

Then run the makefile on a sun4 architecture by typing

Y_ax make

This runs the UNIX script file Makefile. sun4. It was written to compile, and link all the

components.
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Appendix C

Line by Line Example

This Appendix lists the specific commands to run a ROCETS simulation using

• The PW simulation

• A point design simulation

• A LPV simulation

Note that this Appendix is strictly intended for those working in Dr. Gary Balas' lab who

have access to the Sun machines max and/or marlowe. At this point, the ROCETS simula-

tions only run on sun4 architecture. The example files are located at/home/res6/j ackryan/pwfl/Examp

These directions are also located at/home/res6/j ackryan/pwfl/Examples/HowToRun, txt.

Before running the following examples, type the line

_ax set path=(/home/res6/jackryan/Script /home/res6/jackryan/pwfl/PwScripts $path)

It adds the path which contains all the necessary UNIX script files. Also add the paths

>>

>>

>>

path('/home/res6/jackryan/pwfl/m',path);

path('/home/res6/jackryan/pwfl/m/MakeModel',path);

path('/home/res6/jackryan/pwfl/m/TestModel',path);

in Matlab. The}' contain all the necessay Matlab M files.
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C.1 The original Pratt & Whitney simulation

To run the original Pratt & Whitney simulation, go to the directory/home/res6/j ackryan/pwfl/Exampl

and type

maxZ pwd

/home/res6/jackryan/pwfl/Examples

maxZ runorig example

Running example (sun4 version) ..

max%

It creates the files

example.errors

example.runin

example.output

fort.25

test.data

: Contains any error messages if any occurred

: a filtered copy of example.dat which is

sent to the program. Lists .dat file errors

the end (good for trouble shooting)

: values of a single point in the run

: a link to example.dat

: The plot file. Lists all the data of the run.

Now load and plot the data into Matlab by typing the commands at a Matlab prompt

>> [m,names]=data2m('test.data','time');

First line of data: i0

Number of data points: 722

Heading variables:

TIME EPR EPRREQ FGR N2 N2REQ

OPR OPRREQ WAC2 XFCFGR XFCFGR YIMVC

Y2MVC Y3MVC

Number of variables found: 14

>> engplot(m,names,'EPR','EPRREQ');

The variable EPK is is ambiguous.

Using the first occurrence of EPR

>> print -deps epr_plotl

>>
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C.2 Running a Point Design

Now run the Point Design version. The file Kblock contains a point designed controller.

The controller must be in a file named Kblock. First move test. data to test. orig. data

so that the PW simulation results are not over-written.

max_ mv test.data test.lpv.data

max_ runptdes example

Running example (sun4 version)

maxZ

In Matlab, load and plot the new data

>> opr_plot(m,mp,names,'EPR');

The variable EPR is is ambiguous.

Using the first occurrence of EPR

The variable EPR is is ambiguous.

Using the first occurrence of EPR

>> print -deps epr_plot2

>>

C.3 Running a LPV Design

Now run the LPV version. LPVdata contains the LPV controller; the program looks for

LPVdata so the controller must have this name. First move test. data to test. orig. data

so the results from the point design simulation will not be over-written

max_ mv test.data test.orig.data

maxZ runlpv example

Running example (sun4 version) ..

max_

In Matlab, load the new data and plot the new and old together

>> [ml,names]=data2m('test.data','time');

First line of data: i0
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Number of data points: 722

Reading variables:

TIME EPR EPRREQ FGR N2 N2REQ

OPR OPRREQ WAC2 XFCFGR XFCFGR YIMVC

Y2MVC Y3MVC

Number of variables found: 14

>> opr_plot(m,ml,names,'EPR');

The variable EPR is is ambiguous.

Using the first occurence of EPR

The variable EPR is is ambiguous.

Using the first occurrence of EPR

>> print -deps epr_plot3

>>

All files used and created in these examples are contained in/home/res6/j ackryan/pwfl/Examples/.

There are a few more executables (alllocatedin/home/res6/j ackryan/pwfl/PwScripts/)

which have not been specifically mentioned. They are run in the same fashion as listed above.

They are

runorig Runs the original ROCETS

runptdes Run a point design controller

runlpv Run an LPV controller scheduled on power code

runlpvl Run an LPV controller scheduled on lagged power code

runtemp Used to run temporary codes for testing (I just use it

for ease ... it's not necessary)

All the FORTRAN source code used in this project is located at

/home/res6/jackryan/pwfl/src/

The various control algorithm source code files are listed and described below
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Ipv_lag. f

jack_ml_eng_con.lpv.f

jack_ml_eng_con.lpv2d.f

jack_ml_eng_con.ptdes.f

wac2.1ag.lpv.new.f

wac2.1pv.new.f

LPV code which schedules on lagged PC

(run with runlpvl)

LPV code scheduled on PC

(run with runlpv)

LPV code scheduled on 2 variables

(In a proof of concept stage)

Point Design code (reads in Kblock)

(run with runptdes)

LPV code scheduled on filtered WAC2

(run with runwacl)

LPV code scheduled on WAC2

(run with runwac)
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